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SUMMARY

Willieam type modal solutions of the
equations are presented for the transient
beams to a general applied load. Example

elementary and Timoshenko beam
response of several uniform
computations are shown for a

free-free beam sub$ect to various concentrated loads at its center. The
discussion includes factors influencing the convergence of modal SOM-
tions and factors to be considered in a choice of beam theory. Results
obtained by two nume~ical.procedures, the traveling-wave method and
Houbolt’s method, are also presented and discussed.

INTRODUCTION

“d

4

The problem of obtaining the response of elastic structures to
rapidly applied loading is of continuing concern to the aircraft indus-
try inasmuch as aircraft structures must tithstand blasts, landing
impacts, and a variety of other transient loads. In order to study the
various factors involved in this problem, it is desirable to consider
simplified structures for which thorough studies are possible. Among
the simplest examples of continuous elastic structures are uniform beams.
Consequently, besnw have been the subject of a considerable nqmber of
transient response investigations, and,a variety of solutions of partic-
ular beam problems are scattered throughout the existing literature.
(See, for exsmple, refs. 1 to 7. For an extensive bibliography, see
ref. 7.)

It is the purpose of the present paper to provide a relatively com-
plete source of useful modal solutions and to discuss the factors influ-
encing the convergence of modal solutions and factors involved in the
choice of the proper beam theory to be used in an analysis. To this,end,
a consistent presentation is made of Williems type modal solutions for
the response to a completely general transient load of three pertinent
uniform beams (a free-free beam with a concentrated mass as its center,
a cantilever beam, and a simply supported beam). (E&m duplication of
the existing literature is included for completeness.) Solutions, based
on both the elementary and Ttioshenko bean theories, are obtained by a
process which can be readily extended to the solution of problems with
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time-dependent boundary conditions. The application of the method is
illustrated for the case of the free-free hem with a concentrated mass,
and results for ti the beams are summarized in tables I and II. In
addition, some typical computed results are shown for a free-free beam
subjected to various concentrated loadings.

Another purpose of the present paper is
two numerical procedures, the traveling-wave
method (ref. 8). The procedures are briefly
made with both methods are compared with the

SYMBols

@ critical discussion of
method (ref. 6) and Houbolt’s
described and computations
modal results.

C2

E

k

1

effective shear-carrying area of cross section

arbitrary Constant

r
propagation velocity of bending discontinuities, ~

~2

r
A~G

propagation velocity of shear discontinuities, ~

Young’s modulus of elasticity

applied concentrated load

fz2
dimensionless applied concentrated load, ~

shear modulus of elasticity

moment of inertia of cross section

integers

dimensionless frequency parameter,
F

~Z2 m
EI

dimensionless rotary inertia parameter, r/2

dhnensionless transverse shear parame
F

ter, l-Z_
Z AsG

length of beam (half-length in case of free-free beam)
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bending moment (see fig. 1)

dimensionless bending moment, M2/EI

dimensionless static bending moment

generalized mass

mass per unit length

concentrated mass

ratio of the concentrated mass to total mass of the beam,

‘cIml

generalized force

app13ed distributed load (see fig. 1)

dimensionless applied distributed load, q@/EI

cross-sectional radius of gyration

time

transverse shear force (see fig. 1)

dimensionless transverse shear force, VZ2/EI

dimensionless static transverse shear force

coordinate alorigthe beam

deflection (see fig. 1)

dimensionless

dimensionless

dimensionlesss

dimensionless

deflection, yjz

translational component of ith natural mode

static deflection

rigid-body translation

““’m-l
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/

\
1

cm
Dirac delta function b(g) =Ofor~+O;

)

b(~)d~ =1
-w

dummy variable of integration

Cos pi + + cosh ~

dimensionless space coordinate, x/z

dimensionless

ith generalized coordinate

rotation of beam cross section

rotational component of ith natural mode

static rotation of bean cross section

circular frequency of natural vibration

( )Step function ~(7) = O fOr T<.O; ~(7) = 1 fOr T 2 0

Matrix notation: i

[1 rectangular matrix —

LJ row matrix

II column matrix

[1 diagonal matrix

c

u



NACA TN 4244 5

Primes and Roman numeral superscripts are used to denote partial dif-
ferentiation with respect to ~. Dots denote partial differentiation
with respect to T.

WIILIAMS TYPE MODAL SOLUTIONS

In normal-mode solutions for the response of beams to transient
loads, the response is expanded in terms of a series of normal modes of
the beau. The coefficients of the expansion (the generalized coordinates)
are determined from the governing differential equations and the boundary
and initial conditions. Williams type modal solutions (ref. 2) differ
from ordinary normal-mode solutions by virtue of the isolation of that
portion of the response which may be obtained in closed form by a process
of di”rectintegration - the so-called “static’!portion of the response.
Only the remaining “dynsmic” portion of the response is expanded in
series form.

The advantage of the Williams method over ordinary modal solutions
is its ability to yield, for many loading conditions, a more accurate
result with the sane number of terms in the series. (See, for example,
refs. 4 and 5.) lt is particularly advantageous where the response func-
tion is discontinuous. (An exsmple of this is the determination of the
shear due to a concentrated load.) The discontinuity is contained
exactly in the separated static portion of the response and the series
is only required to reproduce a continuous remainder.

In the WilJiams method, the isolated portion of the response is
termed static because significant parts of the inertia forces are ignored
in its determination. In general, however, it is time dependent by virtue
of the time dependence of the applied load and of the nonhomogeneous time-
dependent boundary conditions if such are 5mposed. In the case of beams
with a fixed point of reference, such as cantilever or simply supported
beams, all inertia forces are ignored in the determination of this static
part of the response; for beams with rigid-body freedcms, however, the
inertia forces due to the rigid-body motion must be taken into account.

One method of obtaining Williams type modal solutions is illustrated
herein for both the elementary and ‘I!hoshenkobeam theories.

Elementary Beam Theory

Basic equations.- The motion of a beam subjected to an applied load
of intensity q(xjt) is usualJy taken to be governedhy the BernouUi-
Euler equation
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where x is the coordinate along the besm, t is time, y(x,t) is the
deflection (see fig. 1), EI(x) is the bending stiffness of the beam,
and m(x) is its mass per unit length. The internal bending moment M(x,t)
and the shear force V(x,t) at any cross section (see fig. 1) are given by

#y
M=-EI—

&2

and

(2)

(3)

respectively.

For a uniform beam, these equations may be written in the dimension-
less forms

(4)

ii = +“ (5)

v =-;’” (6)

where
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a
and 2 Is the length of the beam or half-length in the case of a free-
free beam. The primes denote partial differentiation with respect to

.

k=: F
tIand dots denote partial differentiation tith respect to T = — —.
22 m

Symnetrical free-free beam with concentrated mass.- For symmetrical
motion of a uniform beam having free ends at ~ = 1 and ~ = -1, atten-
tion is restricted to the
stated in the form

portion O= E ~ 1 with boundary conditions

~’(O,T) = O (Ya)

~“’((),T) = () (’m)

~’(l,T) = o (7C)

~lf’(l,T) = O (7d)

If, in addition, the free-free beem has a concentrated mass 2mc located

at the center ~ = 0, the influence of this mass may be introduced into

the problem bymachangingthe boundary condition, eqyation (7b), to

?“’(O,T) +~c ?(O,T) =0 where ~c =mc/ml. On the other hand, the bound-

ary conditions, equations (7)) DELY be lefi unchanged and -the differential
eqmtion (eq. (4)) altered to

(8)

where b(~) is the Dirac delta function. In the solution that follows,
the latter alternative is chosen.

The besm is assumed to be initially at rest and unreflected; that is,

Y(E,O) =;(5,0) =0 (9)

Then the response to
in the Williams form

The solution is

a general SmetriCal load ?i(E,T) may be obtained
by the following procedure.

assumed in the form
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(10)

me quantity j7r is the rigid-body translation of the free-free beam.

It is determined to satisfy the differential equation

. (u)

and the initial conditions

Fr(o) = jr(o) = o (12)

The qwntity ~8(~,T) is the static deflection determined to satisfy

(13)

and the cantilever boundary conditions

Y
~8(0,T) = O

y8’(o,T) = o

~8’’(l,T) = O

8(
~ ‘It l,T) = ()

/

Note that, by virtue of the definition of ~r, ~8 also satisTies the

boundary condition ~~’*’(O,T)= O. Finally, the shapes ~i(~) (where

i =0,1, 2,.. .) are the natural vibration modes of the beam satisfying

(15)

#

(14)
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and the boundary conditions

yi’(o) =0

?/’(0) =0

ii’’(l)= o
\

9

(16)

I
Sy’m = oJ

where the dimensionless frequency coefficients ki (where

i =0,1, 2,..
If

.) are defined by ~ =(DtZ2 ~. Further, it can be

shown that the modes ~i(~)

1

1[
1+

o

Note that, by tirtue of the

satisfy the orthogonality condition

arbitrary selection of a datum plane for ~s,

the dynamic portion of the response, in general, still contains a rigid-
body cmnponent (i = O). As defined, the total deflection ~(E,T) satis-
fies the boundary conditions (eqs. (7)). There remains the problem of
determining the coefficients @i(T) so that the differential equation

(eq. (8)) and initial conditions (eqs. (9)], are satisfied.

If expression (10) is substituted into differential equation (8) and
eqmtions (13) and (15) ~e taken tnto account, the differential equation
is reduced to

Multiplying eqmtion (18) by [l + ~ 5(6~yj(~) and integrating with

respect to ~ frmn
following result:

O to 1 yields, in view of equation (17), the

(i=o, 1,2, ...) (19)
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PJT)
1

H 1
0

+

Similsrly, substitution of expression (10) into the initial conditions
(eq,.(9)) and taking into account equations (I-2)lead to the following
conditions:

@t(o) ..* 1(i=o, 1,2, ...)

J@) .AL# (i=o, l,2j ...)

(20)

A simple formula for the generalized-mass integral mi for r

i =1, 2, . . * has been presented in reference 9 for uniform beams
having & of the usual end conditions (free,
without concentrated masses. In terms of the
defined herein, the extension of this formula
mass & at ~ =Ois

1
mi =

J![ l+% 5(~)lYt2(5)d~
o

pinned, or clamped) but
dimensionless quantities

#

to beams with a concentrated

\

(i=l,2, ...) (a)

For the present case where the end (~ = 1) is free, equations (~) reduce
to

The rigid-body

mi
[ 1=*~Fi2(o)+-Yi2(Q(i=l,2, *..) (22a)

generalized mass (i = O) is seen to be
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(22b)

Some reduction of the generalized-load integral Pi(~) may also be

accomplished in general terms for i = 1, 2, . . . . The quantity

successive integrations by
tions (eqs. (14) and (16))

Pi(T) = -_$

Substituting from equation

-Iv
replaced by ~ Yi

ki
(~) (eq. (15)); then,

parts and application of the boundary condi-
reduce the integral to

1

1
?sN(&@ yi(~)d~ (i=l,2, ...)

o

(13) and recalling that, in natural vibration,
the inertia–loads o~ a free-free besm are self-equilibrating yield,
finally, the generalized load

On the other hand, for i = O, the quantity PO(T) IS most s%ly

expressed as
.

J
L

PO(T) =fo ?s(%7)d5
o

It mhzht be noted here that, in the usual methcxl

(23b)

of normal modes, the
expre~sions for generalized-force corresponding to equations (23a) do

/not have the factor 1 %2. This is one manifestation of the more rapid

convergence of the Williems method.

The problem now requires direct integration of equations (U.) and
(13) for the deflections ~r and ~s, solution of eqgations (19) for

the generalized coordinates #i, and solution of equation (15) for the

natural modes of vibration ~i, with each function satisfying the desig-

nated boundary or initial conditions. Direct integration of equation (1.1)
with the initial conditions (eqs. (12)) taken into account yields

~r(T) = l:& &’JoT’Jo’a(E’T)’g(dT)2(24)
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Substituting eqmtion (U) into equation (13) and integrating four times,
taking into account the boundary conditions on ~~ (eqs. (14)), yields

the following result:

f~(~,d = LN1’ELg6(E’T)(U)4-Aii-$+w%’)dk
(23)

The solution of equation
obtained by means of the

(19), satisfying also equations (20), is readily
Laplace transform. The result is

%(T) +ki

J
@i(T) =-r ~ ~7pi(6)sinki(T -e)de (i=O, 1, 2, . . .) (26)

Finally, the natural-mode shapes ~i and the corresponding frequency

equation are derived in reference 10. These results, including the
natural-mode shapes and the frequency eqyation, are summarized for easy
reference In table I(a).

Re@tions are also given in table I(a) for the moment fi(E_,T) and
shear V(~,T) obtained by substitution of the deflection response into
eqwtions (5) and (6). (lt is also possible to obtain these quantities
by integrating the total load as

However, some care must be exercised in using these formulas when the
load function is discontinuous in time or has discontinuous first deriv-
atives with respect to time.)

Other confi~ations. - The response of a uniform free-free beam
without a concentrated mass is given by the results in table I(a) with

‘c = o. The response of a cantilever beam may also be obtained from the

response of the free-free b~am with the concentrated mass by a limiting
process in which the mass mc approaches infinity. Results for the

cantilever beam are summarized in table I(b). For completeness, the
Williams solution for a sbply supported beam is shown in table I(c).
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Time-dependent boundary conditions.- It is worthwhile to point out
the method outlined in this report is directly applicable to the

solution of problems with nonhomogeneous time-dependent bowdary condi-
tions. Such problems require the separation of the solution into two
puts, one satisfying the time-dependent boundary conditions and the
other capable of being expanded in terms of time-independent functions
such as the natural modes of the beam. (See, for example, ref. il.) ln
the Willisms method, this separation is already made and the-dependent
boundary displacements ~r forces are simply introduced into the boundary
conditions imposed on y~ or into the equations for rigid-body
displacements.

Consider, for exsmple, a uniform beam fixed at one end and given a
variable displacement at the other, such that its differential equation
and boundary conditions are

;(O,T) =f’(o,T) =~’(l,T) = O

;(l,T) = g(T)

The solution would be assumed in the form of eqyation (10) but with
? = O since there is no rigid-body translational freedom in this case.
T&e static portion of the solution would be dete?nninedto satisfy

and

;@,T) = &(o,T) =~s’*(l,T) =0

y&T) =g(T)

while the expansion functions ~i (where i = 1, 2, . ..) are the solu-

tions of
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and

(the natural modes of a clamped-pinned beam). ~ order to complete the
solution, the generalized coordinates corresponding to a besm initially
at rest and unstressed would have the usual form

where

% jj’”(1)

Similarly, a uniform free-free been with a specified time-dependent
s

displacement g(~] at its center moves according to
$

~(O,T) = g(T)

;’ (O,T) =~’(l,T) =~’’’(l,T) = O

In this case

~r(T) = g(T)

and ?5(5jT) is determined frcan

and

~&7) =?5’(0,T) =7s’’(l,T) =~s’’’(l,T) = O
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*

mile the =t~al ~od- ?L (where i = 1~ 2) ● ● ●) are the modes Of

. a cantilever beam. Or if, instead of ~(0,T) = g(7), there is given the
force boundary condition ~“’(O,T) = h(T), the rigid-body motion is deter-
mined from

.

The static solution ~s is taken to satisfy

~s%,T) ‘~(~,T) ‘~r(T)

?&T) = ?6’(0,T) ‘Y6’’(1,T) = ~6’’’(l,T) = O

and the modes ?i (where i =0, 1, 2, . . .) are the natural modes of

a free-free beam. In-this case, it canbe shownby integrating the dif-
ferential equation governing ~s that ~s’’’(O,T)= h(T).

Thus, the treatment of problems with time-dependent boundary condi-
V tions involves no special separate procedure when the Willisms method is

used.

t

Ttioshenko’s Be8.mTheory

Basic equations.- In the elementary beam theory, deflection occurs
only by virtue of the rotation of the besm elements and only their trans-
lational inertia is taken into account. The Ttioshenko beam theory
(ref. 9) permits additional deflection due to transverse shear and accounts
also for the rotational inertia of the besm elements. According to this
theory, the motion of a beam subjected to an applied load of intensity
q(x,t) is governed by the e~tions (see, for exarcple,ref. 6):

(27)

where ~ is the rotation of the cross section (see fig. 1), r is the
k

radius of ~ation of the cross section, and A6G is the stiffness in

u
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transverse shear. The effective shear-carrying area A8 differs from

the total area because the shear stress is not constant over the cross
section. The bending moment M and transverse shear force V are
given by

3$M=-EI— ax (28)

and

v = A8G
(?x

For uniform beams, these equations
less forms

)-If (29)

may be written in the dimension-

~ 2(Y’?=~- -*) (32)
s

r
where the transverse shear coefficient k~ = ~ ~

~ A~G
is a measure of the

freedom of the beam to deflect through transverse shearing action and the

rotary inertia coefficient ~1 = ~ is a measure of the rotational

inertia per unit length. —

Note that the functions ~ and v are both necessary for adequate
definition of the deformation of the beam. Since these go hsnd-in-hand,
the terms “solution” and “response,” as used herein, will apply to these
functions collectively and the single notation ~(5,T);w(~,r) willbe
used

tion
free

to specify both functions.

Symmetrical free-free beam with concentrated mass.- For the applica-
of Ttioshenko’s theory to the symmetrical motion of a uniform free-
beam with a mass ~e at the center ~ = 0, attention will again be

*
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restricted to the portion O S ~ S 1. As in the case of the elementary
theory, the effect-of
eqyations if desired.
ential equations (m)
duced in the boundary

the mass may be introduced into the differential
However, for illustrative purposes, the differ-
will be left unchanged and the mass will be intro-
conditions; the boundary conditions then become

*(o,’T-)= o

~’(l,T) = O

~’ (l)T) - ~(l,T) = O

t

Note that the location of the concentrated mass
restriction to symmetrical motion exclude any effect
inertia of the concentrated mass.

(33)

at E = O and the
of the rotational

The beam is assumed initially at rest and unreflected; hence,

1

y(g,o) = o

?(3,0) =0

*(3,0) = o

if(E,o)= o

With the problem thus completely defined by the differential equations
(eqs. 30), the boundary conditions (eqs. (53)), and the initial conditions
(eqs. (34)), the solution maybe obtained as follows.

Assume that

Hk)T) =;r(T) + ~&T) +

1

; !qd YJE)

iz

m

*(E,T) = ~&T) +
I

#i(T) ~i(~)

i=o

(34)

(35)
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where ~r(T) is again the rigid-body translation of the beam,

~~(@;*6(~jT) is the static solution, and ~i(~);~i(~) (where

i =0,1, 2,.. .) arethenatural vibration modes.
translation of the beam ~r is governed again by the

equation

and the initial conditions

;r(o) +(o) =0

The static solution is determined to satisfy

and the cantilever boundary conditions

~6(o,T) = O 1
@,T) = O

*/(l,Tj = O

f6’(l,T) - $6(1,T) = OJ
The mode shapes ~i(~);vi(~) satisfy

The rigid-body
differential

(36)

(37)

.

(38)

(39)

(40)
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-“

the boundary conditions

vi(o) =0

$i’(l) = o

YJ(l) - VJl) =0 1+@’(o) = -~ki2?i(0)

(41)

and the orthogonality relation

1’{[1 l+iiictwpi(g) 7$0 +~2vi(5)*j(E)
}

d~=O (i + J)
o

(42)

The derivation of this orthogonality rebtion is shown in the appendix
along with the solutions to equations (40) and (41).

s
Substituting equations (35)

and utilizing equations (~) and

m

i=o

Multiplying equation (43a) by ~

~%j, adding the two equations,

OS ig-~1 yield the result

1

1

into the differential equations (eqs. (30))
(40) reduce the differential eq~tions to

)
~zpl ~i = -;* (43a)

)
q2$y l$i= -?s

+% a(~~?j and eqyation (k3b) by

and integrating the sum over the range

(i=o, 1,2, ...) (44)
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into account the orthogonality relation (eq. (42)). The
mass and generalized load appearing in eqmtion (44) are

.

and

respectively.

By a sbilar process the initial conditions (eqs. (34)) beco~

hi(o) =-~ (i=o, 1,2, ...)

.

}

(45)
ji(o) ..Q.# (i=o, 1,2, ...)

It is shown in the appendix that the generalized masses mi of the
*

given free-free beam can be evaluated for i = 1, 2, . . . as folJows:

The remaining generalized mass

to

1*’(u (i =1, 2, ● . .) (46a)
‘=%

~ reduces, as in the elementary theory,

(46b)

since the symmetric rigid-body mode has no rotational component *O.

Further, the generalized force Pi(T) for i = 1, 2, . . . may be

reduced, by a process of substitution from eqyations (38) and (40) and
integration by parts, to

J’
1

Pi(T) =— ~i(~) ~(~}T)d~ (i = 1, 2, . . .) (47a)

:2 0
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.

and the rigid-body generalized force P. is

f

1
PO(T) =70 o ?&>T)d~ (4P)

On the basis of the assumed form of the solution expressed in equa-
tions (35), the problem of determining Y(~~T);$(~,T) has been rephced
by a nuniberof component problems requiring determination of the func-
tions ~r(T), ?s(3jT);*s(@~ 91(T), -d ?i(~);~i(~). me solutions

of these component problems must now be obtained.

For ~r(T), integration of equation (36) in conjunction with equa-

tions (37) yields

(48)

For ~s(~,T);vs(~)T)y substitut~ “jr ‘rm ‘qution (%) ‘nto ‘qW-

tions (38) and integrating, in conjunction with the boundary conditions
(eqs. (39)), gives

}

(49)

Since eqpations (44) and (45) are identical to equations (19) and (20) of
the elementary solution, the generalized cmrdinates Oi(T) are again

givenby equation (26). The solution of equations (40) for the natural

modes ?i(~);~i(~) is given in the appendix.

The solution Just obtained and corresponding solutions for canti-
lever and simply supported beams are summarized in table 11.
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TWO -ICAL METHODS CIFSOLU’ITON

Traveling-WaveMethod

.0

.

A traveling-wave method for calculating the response of a structure
to transient loads can be devised only if the motion of the structure is
governed by differential equations of the hyperbolic type. The simplest
beem theory which completely fulfills this requirement is l?imoshenko’s
theory, which includes the effects of both transverse shear and rotary
inertia.

In developing a traveling-wave method of solution, it is convenient
to first replace the Ttioshenko partial differential eqpations (eqs. (27))
with the following four equivalent ordinary differential equations written
along four characteristic lines 1+, I-, II+, and 11- in the x,t plane:

Along I+ where
E=*:

Along 1- where & =-~:

Along 11+ where ~ = ~:C2

Along 11- where & =-~:C2

~dM+mr2dQ-Vdt=0 (5@)

Lasc1 -mr2dO+Vdt=0 (50b)

~ dv
( )

-mdv+ mc2$l+qdt=0 (50C)
C2

-&dV+mdv+@2Q- q)dt =0 (50d)

The derivation of eqpations (50) is given in reference 6. The dependent
variables are the moment M, the shear V, and the linear and angular

by alp
velocities v = — and Q = —.

at at
The quantities c1 =

r F~ and c2 = ‘~G

are the propagation velocities of discontinuities in moment and shear,
respectively (phase velocities of disturbances with infinitesimal wave
length). In each equation, the total differentials specify infinitesimal
differences in the designated characteristic direction.

For any given beam, the slopes of the characteristic lines are known;
hence, closely spaced networks of characteristic lines may be drawn in the
space-time plane. Various schemes for the approxhate step-by-step inte-
gration of equations (50) over such networks are possible. In general,
all require some form of interpolation since Timoshenko’s equations have
two characteristic nets. (The particular case where the two nets coincide,
c1 = C2, has been treated in detail for uniform besms in ref. 6.) One

8

#
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integration scheme is briefly described in
restricted to a uniform beam for which the
lines.

23

this section. Attention is
characteristics are straight

The besm is divided arbitrarily into segments & (see fig. 2), and

the the interval is taken according to At = &Ax. This specifies a

lattice of points in the space-time plane at the intersection of the I+
and I- characteristic lines. Consider a general point 1 (fig. 2) from
which characteristics of both families have been drawn backwards in time.
The 11+ and II-

(
lines have steeper slopes since

)
C2 < c1 and termi-

nate at points 2’ and 4’. Then the differentials in equations (~0) mybe
replaced by the appropriate finite differences and the folJoting equations
are obtained:

&Jfl-( M4) 01r2(~-$14) +
c1

(++)C2 (
-m(vl-v2,) +mc2$$SZl+

(&l- V4,) + ln(vl-
(

V41) + mc2’~ ~ +

*(VI + V2) = 0 (5~)

*pl + V4) = o (51b)

‘2’) ‘%61 + Q) = 0 ‘51C)

‘4’) - Ha+ ~’) =0 ‘51d)

It is assuned that M, V, v, and S2 are known at points 2, 3,
and 4. Parabolic interpolation formdas are substituted into equa-
tions (51c) and (51d) to give the quantities at points 2’ and 4‘ in terms
of their values at points 2, 3, and 4. Then equations (51) become four
equations for the four unknown quantities Ml) VI, Vl, and Q1 in

terms of known values of M, V, v, and Q at each of the lattice
points 2, 3, and 4. These may be solved to obtain a matrix recurrence
formula; however, a simplification my be intrmiuced based on the fact
that quantities at points 2 and 4 have already been determined to satisfy
the following equations:

(52)
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Combining equtions (52) with equations (~la)
result

(mr%-p12. Ll~+ QJ - +Fl
where M has been eliminated. Now equations

NACA TN 4244

and (51b) leads to the

-V5)=0 (531

(51c), (51d), and (53) con-
stitute three equations for the three-unknowns ~~ Vl, aid v~ &
terms of known values of Q, V, and v at each of the points ~, 3, 4,
and 5. Solution of these eqyations yields the recurrence formula

El

‘1

‘1 (=*k]

ri2

?2

‘2

‘3

+ [A3] f3 + [A4]

‘3

ri4

?4

;4

[1+ A5 )(54)

( ilv amwhere the quantities have been made dimensionless E s — = $22

%
r)

aT rm
and?z-=v2~

EI
and where

dT

[1A2 ‘i

C2
—Kc1

1
-K2 &

E%l=(+)-w 1

0 0

0

0

l+li

.
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L

L0 0

[

0 -$lc#

[Q] = O -A+=
) ,

0

0

0
J

o

0

C2 K.—
Cl km

S(1+I@)
1 .

Note that the more appropriate parameter
c1

()~ ‘%
has been used here

instead of ks.

The response of a beam may now be obtained by the repeated applica-
tion of equation (54) except that, as is indicated in figure 2, special
formulas which take into account the particular boundary and initial con-
ditions of the problem, must be derived for boundary and initial points.
In addition, it must be remembered that the characteristic lines are pos-
sible loci of discontinuities in the dependent variables or their deriva-
tives. (See, for example, ref. 6.) Such discontinuities will arise, for
example, if there are concentrated loads (or imposed velocities) that
have histories which are discontinuous or have discontinuous derivatives.
Discontinuities in M or Q are propagated with velocity c1 (the
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locus of such a discontinuity is shown by the dashed characteristic lines
in fig. 2); discontinuities in V and v propagate with velocity C2.

The magnitudes of discontinuities may be predetermined through the ap@i-
catfon of equations (~0) in a manner which is illustrated in reference 6.
Thusj in general, discontinuities may be added as they are encountered in
the step-by-step’solution. In the scheme which led to equation (54), it
will be noted (fig. 2) that special consideration is necessary for points
just above the locus of a discontinuity. Special formulas are certainly
required where there is a jump in one of the functions and it may be
desirable to account also for discontinuous first derivatives.

Once fi, ~, and ; have been determined at a point, R may be
obtained at that point by integrating equation (50a) or eq~tion (50b)
along the proper characteristic from some boundary where M is known.

It should be.mentioned that the selection of the I+ and I- lines
as the basic network is based on (rather intuitive) considerations of the
stability
(See ref.
numerical
domain of
and 11-

of the numerical procedure with regard to propagation of errors.
12.) It is assumed that the dmain of dependence imposed by a
procedure should at least encompass the total theoretical
dependence. ‘Ibiswould not be the case if the steeper II+
characteristic lines were utilized as a basic grid.

A cantilever beam

P2) “ “ “ pn, iS shown

Houbolt!s Method

acted upon by a series of

in the foUowing sketch:

‘1 ‘2 ‘3””
I I I

concentrated loads P1~

. Pn

4
I

b-l
o 1 2 3.0.n

Station

Such a beam has the deflection

Iyci = [W’1

.
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“
where the subscript c is
are cantilever deflections

used here to indicate
measured with respect

27

that the deflections
to station O and where

. [G] is a matrix of stiffness influence coefficients. The inverse equation
is

IPI = [G]-lIYCI (56)

The deflections of a free-free beam may be expressed in terms of the
cantilever influence coefficients [G]. For the free-free beam the deflec-
tion is y = y. + yc where y. is the deflection at station zero (the

center of the free-free bemn); hence, eqution (~)

1

b] = [G]-l]YI - YOIG]-l :.
.
1

But, on the free-free beam, there is the additional
w

condition of overall equilibrium, PO is given by

II

po..
I

Pi = -lIL.- l~[G]-llyl + YOL1 1 .

i=l

becomes

load PO. From the

(57)

1

1

. . ~ [G]‘1 :
.

(58)

and equtions (57) and (~) may be ccribinedinto a single matrix equa-
tion for the loads at stitions O to n of a free-free beam. This ‘
equati’onmay be written

IPI = [A]IYI (59)

where

[1[A] = a ‘b’

lbl[G]-l
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and where the

respectively.

Consider

1

1

fbl = -[GJ-l : .
.

1

Lbj = -L1 1. . . lJIG]-l

.

1

1

. IJ [G]“1 :
.

1

vectors 1p I and Iy I now contain PO

the motion of a free-free besm subjected
distributed load q(x,t). The equivalent concentrated
stations 0, 1, . . . n are, at any the,

IPI = [W(M - Mid)

.-

and y. terms,

to the applied
loads at the

(60)

where ~m~ is the diagonal mass matrix, and lW] is the weighting matrix
(ref. 13):
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The essential feature of the Eoubolt procedure (ref. 8) is the method of
expressing the second time derivative ~. The acceleration at the

‘J
= j At is written as follows:

(61)

and is obtained by passing a third-degree curve through the points at

t = ‘J‘ %’ ‘J-2’ ad ‘J-3 at ‘a* ‘tition ‘i“ ‘Ubstitutiw ‘qm-
tions (6o) and (61) into equation (59) (’writtenfor time t = tj) and\
solving for yj leads to

lY1’j= [mdj +

the recurrence equation

~[cl (5IYIj-~ -
)

(62)41 Ylj-2 + lYlj-3
(At)2

where

[ 1
-1

[B] = [A] + *[W] ~m~ [W]
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Thus, the Houbolt method simultaneously determines all the deflections

y(xi~tj) (*ere i = 0, 1, . . . n) in terms of the deflections

Y(x@J.1)> y~i~tj.2)> and Y(q>tj-3)* A concentrated load 2f(t)

at the center of the free-free besm may be included in eqpation (62) by
adding to the right-hand side the term

fj Idl (63)

where

1

0

[ 1
-1 0

Idt = [A] + &[?tm~
●

“

.

0

The solution of a problem by repeated application of equation (62)
requires that the initial conditions of the problem at time t = O be
expressed in terms of fictitious ordinates lY1-l,~Yl-2 at times t-l

and t-2. This is accomplishedby expressing the time derivatives l~lo

and I~lo in terms of a third-de~ee curve passed through points at

t = tl, 0, t-l, and t-2 at every station. For the case where the

beam is initially at rest and the applied loads increase
from zero initial values, the initial conditions

IYIo = Iilo = [Ylo=o

are converted by this process to

continuously

(64)

.

.

-4

w

JIYI-2 = -81Y!1
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Then, equation (62), applied for j = 1, yields

which maybe solved for Iyl, to obtain

(66)

me app~cation of equation (62) for ~ = 2, 3, . . . is now strai@t-
forward. ~ t-t r-ins is the determination of the cantilever influ-

ence coefficients [G~.

In this connection it should be pointed out that, although no
restrictions have Men made on the beam theory to be used, the applica-
tion of the method, as formulated, with Tirnoshenkolstheory requires
that the deflections y be interpreted in a general sense and include
also the rotations of the cross sections *. Thus, with two quantities
to be determined at each station, the order of the matrices is 2n and
the required computational labor is roughly four times that required with
the use of the elementary besm theory. A comp?xxnisewhich affords
increased accuracy over the elementary theory, yet avoids this Mge
increase in computational labor, is the use of a theory which contains
transverse shear freedom but no rotary inertia. With no associated
inertia loading, the rotations ~ need not be explicitly included in
the step-by-step dynamic analysis and do not appear in the rec~rence
fo~, equation (62). ‘he cantilever influence coefficients are deter-
mined as follows on the basis of this latter theory.

The influence function (Green’s function) G(x;xl) is the solution y

of the eqwtions

a ~ (1+A&+ .()
XE1ax s ax

+%4$s]] =-+X1) 1
and the boundary conditions

(67)



32

y(o) = $(0)

However, the deflection may

contributions, y = yB + ys

for the influence function

NACA TN 4244

%) -*(2) =0M(2) =bx
‘ax

(68)

be written

with V =

as the sum of bending and shear

&B
—,-and it is e~edient to write
ax

G(x;xl) = ~(x;xl) + GS(X;XI) (69)

where ~ and GS are the solutions of the differential equations

(eqtiva~ent to eqs. (67))

and boundary conditions

b AG+.
Gsz)x

(equivalent to

-5 (X-XJ

/

eqs. (68))

(70)

For given distributions of bending and shear stiffnesses, equations (70)
may be integrated directly in conjunction with the boundary conditions
(eqs. (71)). For a uniform beam, the resulting total
are:

influence functions

\

(x<4
(72)

.

.“

u

n
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&
In dimensionless terms,

33

equations (72) may be written

= %3.+$-y)(DE,J7’)
and, for a uniform bemn, the recurrence formula, equation (62), beccmes

where

1- 7-1

1 rIEJj[5]= [ri]+Afi
(AT)2

L5 =11... lJ[a]“-

[1fi

1

1
.
.
.

1

*

.
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[1ii =*J
24

“7

2

6 -1

202

220

.

2

.

.

2 202

2 20 2

-1 67

The elements Gij of the matrix of influence coefficients [JG are seen

. .

.

to be

where i designates the row and j, the column.

RESULTS AND DISCUSSION

Modal solutions

For illustrative purposes, example computations have been made for
the case of a uniform free-free beam, for which ~1 = 0.1, ks = 0.2,

and fic= O. The beam is subjected to the applied concentrated load

d(~,T) = 2?(T)?)(E)

where :(T) has each of the time variations shown in figure 3. The
given values of ~1, and ks are appropriate to a beam having a solid

●

●
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rectangular cross section
to 2.887. The calculated

and a ratio of half-len@h Z to depth equal
response has been limited to the history of

transverse shear at the point ~ =*. Mcment calculations are omitted

because they do not provide as severe a test of the analytical methods.
.

The point & =$ is chosen arbitrarily, since the location corresponding

to maximmn transverse shear is not known in advance.

The responses to the step and ramp-platform loads were obtained on
the basis of elementary theory frm table I(a) and on the basis of
Timoshenko’s theory from table II(a). ti each case, six modes were used
in the expansions. The responses to the other three functions (figs. 3(c),
3(d), and 3(e)) were obtainedby superposition of the step and ramp-
platform results. ‘Iheresulting shear histories are shown in figures 4,
5, 6, 7, and8 up to a time corresponding approximately to the period of
the first natural mode of vibration of the beam.

The long dashed curve in each figure is the static portion of the
response. Thus, the largest dynsmic overshoot factor, achieved by the
step loading (fig. 4), is approximately 2.7.

It will be noted that the blast pulse load (fig. 3(e)) has only one-
half as much impulse as that contained in the square and triangular pulse
loads (figs. 3(c) and 3(d)). Hence, if the responses to the three pulse
loads (see figs. 6, 7, and 8) are to be compared on the basis of equal
input impulse, the response to the blast pulse must be doubled. On this

basis, the blast pulse is seen to cause the highest shear stress at ~ = ~.

An indication of the convergence of the modal results in figures 4
to 8 is provided by the bar graphs in figure 9. On each graph, the heights
of the bars correspond to the magnitude of the static portion of the
response (zero frequency) and to the s.mplitudesof the terms in the series
expansion for the dynamic portion. (For each load, T iS sufficiently
large so that the load function has attained its constant value.) The
bars, thus, represent the maxirmmpossible contribution of each term to
the total. Note that, for the loads of long duration (the step and rsmp-
platform functions), the static part and the first term contribute a pro-
portionately large share of the response and sufficient accuracy could be
obtained with only three modes. On the other hand, the adverse effect of
reducing the load duration is illustrated by the bar graphs for the
responses to the three pulse loads. In each case, no convergence is appsr-
ent for the first few modes and, in the cases of the square and blast
pulses, there is some doubt as to the ade~cy of the even six modes,
particularly with the use of the elementary theory.
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Further evidence of the effect of load duration on convergence and,
in addition, an indication of the effect of load distribution =e given
by the following cases of the response of a uniform simply supported beam
to various loads:

Case (l): For auiforrnly distributed step load ~(~,7) ‘1(T),

Case (2): For a step

5(EjT) = ~(@(T),

m

4
z

1 Cos ifigCos 1%%2
~ ~

i=l,3,...

load concentrated at the center

.

.-

ii(~,T) =$ (~-$~~-+)-~ ~ (-l)% ~sinifi~c0si2fi% . ~“-
i=l,3,...

.

w ~

1(E $V(E,T)+ - -: I
(-1)2 * Cos iflgCos i2fi%

i=l,.3,...

Case (3): For a uniformly distributed ~ulse load l(g,T) = 5(T),

m

~(&,T) = #
I

1 sin ifi~sin i2fi2TT

i=l,3,...

m

i(g,T) =4
I

Cos ifigsin i2fi2T

i=l,3,...

.-

.

.
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Case (4): For an impulse load concentrated at the center

~(~,T) =
()

b @~(T),

w

fi(~,T)= 2
I

(-1)+ Sillti~ Sin i2X2T

i=l,3,...

co
i-l

t(&T) = %( z (-l)TiCos il-cksin i2Yr2T

i=l,3,...

These results are based on elementary beam theory. (The last two cases
are simply time derivatives of the first two cases.) !lheeffect of load
duration is illustratedby campsring cases (1) and (3) (or cases (2)
and (4)). Changf& from a load of infinite duration (the step load) to
a load of zero duration (the impulse) introduces a factor i2 and, hence,
reduces the rate of convergence (and, in fact, produces divergent series
in both case (3) and case (4)). Similarly, the effect of spatial dis-
tribution maybe seenby comparing cases (1) and (2) (or cases (3) and
(4)). Changing from a distributed to a concentrated load introduces a
factor i and hence reduces the rate of convergence. The apprent change
in the sign of half the terms is not significant since each series is
essentially an irregularly alternating series (except at certain specific
combinations of ~ and T).

The Need for Timoshenko’s Theory

The qyestion of which theory should be used to determine the response
of a beam to a transient load is intimate~ related to the convergence of
the result. This is because the secondary effects of transverse shear and
rotary inertia become increasingly important for the higher modes. Note
in figure 9, for example, the growing disparity between the natural fre-
quencies of a uniform free-free besm calculated on the basis of the ele-
mentary and Ttioshenko theories. Thus, if it is determined that, for a
given beam subjected to a certain load, modes strongly affectedly trans-
verse sheer and rotary inertia contribute a large share of the response}
it is unlikely that elementary theory will yield correct results. k case
the given beam is a cmnplicated nonuniform structure, a rational procedure
for determining the proper theory would be to consider a uniform approxi-
mation to the given beam, quickly obtain the response of the uniform beam
to the given load by elementary theory (table I) ad investigate the con-
vergenc~ of the res~onse, and at the s~e
of rotary inertia and transverse shesr on

+

time to consider the influence
the modes (as manifested by the
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differences in natural frequencies obtained with the elementary and
Ti.moshenkotheories).

.

This reasoning is generally, though not conclusively, confirmed by
the results in fi~es 4 to 9. Only the first mode of the free-free beam
shows good agreement between the fregpencies as given by the elementary
and QUmoshenko theories. (See fig. 9.) Thus, the responses to the step
and ramp-platform loads (figs. 4 and 5), which depend heavily on the
first mode and the static contribution, also show good agreement between
the two theories. me responses to the pulse loads (figs. 6, 7, and 8),
obtained with the two different theories, beu little or no resenitbnce
to each other since they depend heavily on the higher modes. However,
except for the response to the sqwe pulse load (fig. 6), the two
theories do yield about the same peak stress. (It is felt that the posi-
tive peak achieved in the first half period should be given more weight
t~ the negative peak achieved later, since_thelatter would be con-
siderably diminished by material damping which has not been included in-– -

—

this analysis.)

Boundary conditions also influence the need for a more refined
theory. For exsmple, although the elementary theory is adequate for
obtaining the shear due to a step load on the free-free bean of figure 4,
it cannot be used to obtain the shear at the center of the same beam
where the input is a prescribed “step-velocity” of the point ~ = O (the n
so-called problem of the “instantaneous arrest of the root of a moving
cantilever beam’!). In the latter case, elementary theory yields a diver-
gent series (ref. 14), whereas Timoshenko’s theory yields a modal solution ,
which converges to finite values (ref. 6).

Numerical Solutions

The two numerical procedures, the traveling-wave method and Houbolt’s
method, have also been used to calculate the transient response of the
uniform free-free beam considered in the previous sections to an applied
ramp-platform load. In the calculations by both procedures, the beam was
divided into six segments (A5 = o.ti67). Results are shown in figure ~.

For the traveling-wave method, the the interval is

AT = ~Ae = 0.01667

Relatively simple boundary formulas (based on linear interpohtion) were
used in this case and discontinuities in the derivatives of V and v,
arising from the discontinuities in the slope of the ramp-phtform func-
tion, were ignored.

.
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.
In contrast with the traveling-wave method, the Houbolt methml

imposes no inherent restriction on the selection of the time interval AT
in relation to the space interval A~. The time interval may be taken as
hrge as is consistent with the desired accuracy. This freedom has been
utilized in that the calculations by the Houbolt method have been made
with the time interval AT = 0.03333, which is twice the time interval
used with the traveling-wave method. In addition, the computations by
the Houbolt method do not include the effects of rotary inertia and were
stopped at a point Just beyond the peak load.

It will be noted that the numerical results in figure 5 approximate
the (essentially converged) Timoshenko modal solution fairly well. Both
numerical methods underestimate the peak stress, the traveling-wave method
by 14 percent and the Houbolt method by 9 percent.

The greater accuracy of the Houbolt result is particularly significant
since it was obtained with less computational labor due to the use of the
larger time interval. It must be kept in mind, however, that economical
use of the Houbolt method requires that it be applied in connection with
the elementary theory or with the addition of transverse shear alone. If
both rotary inertia and transverse shear must be included, the labor
required in applying the Houbolt method is quadrupled. Fortunately,
rotary inertia is negligible in many problems. (See, for exsmple, ref. 15.)

s
It should be mentioned that the traveling-wave procedure, as so far

conceived, has proved smnewhat sensitive to minor changes in the scheme
. used to obtain recurrence formulas. (Only one scheme, the most success-

ful.so far found, has been described in this report.) A possible reason
for this stems from the fact that the slope of the basic network of char-
acteristic lines is dependent on rotary inertia. In fact, rotary inertia
is necessary to give the beam equations the wave character essential in
the conception of a traveling-wave method. Thus, In view of the relative
negligibility of rotary inertia for many practical problems, this sensi-
tivity is perhaps not surprising. In general, it must be concluded that
a traveling-wave nwnerical method of analysis which is superior to the
Houbolt method has not yet been devised.

Nmerical results have also been obtained for the response to the
triangular pulse load by superposition of the _-platform results.
These results are shown in figure 7. The results indicate that more
degrees of freedom must be taken with both procedures to predict ade-
quately the response of the beam to the given triangular pulse bad, and
from this exsmple it appears that the modal method of solution is to be
preferred. However, the simple problems discussed herein do not portray
the main advantages of numerical methods. For example, numerical methods
are readily extended to apply to nonuniform beams and conveniently adapted
to the use of modern high-speed computers. A fundamental characteristic

= of numerical methods is the replacement of professional engineering time

.
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by routine cmputhg tti. Hence, numerical procedures are not to be
condemned on the basis of the results in figure 7. The selection of
the best method requires the consideration of all these factors in reh-
tion to the specific problem.

CONCLIIOINGREMARKS

.

Williams type modal solutions, based on both the elementary and
Timoshenko beam theories, have been given for the response of several
uniform beams to a general transient load. The response to any specific
load may be obtained frcm these solutions by performing a series of indi-
cated direct integrations of the load function. Typical computed results
have been shown for the shear response of a free-free beam to various
concentrated loads.

The convergence of modal solutions is shown to depend both on the
history and distribution of the load. Decreasing either the duration
of the loading or the region over which the load is applied reduces the
rate of convergence and may prcduce divergence.

The need for a more refined theory, as compared to elementary theory,
is inthately related to the rate of convergence of the modal solution. . ‘
If modes which are strongly dependent on transverse shear and rotary
inertia contribute a large portion of the response, Timoshenlso’stheory
must be used.

.

Comparison of the Houbolt and traveling-wave numerical methods indic-
ates that the Houbolt.procedure has many advantages over the traveling-
wave procedure as so far conceived.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., February 5, 1958.

9
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APPENDIX

SYMMFZRICAL NATURAL VIBRATION (E?A UNIFORM FREE-FREE

TIMOSEENKO BEAM WITH A CONCENTRATED MASS

Natural Modes and Frequencies

The differential equations and boundary conditions governing sym-
metrical natural vibration of a free-free beam with a concentrated mass
at its center may be written in the fo~owing dimensionless forms:

(Al)

*(O) = o (A2a)

*’(1) = o (A2b)

f’(1) - qr(l) = o (A2c)

“(O) + fick2~(0)= O+Y (A2d)

where ~(~);~(~) is the natural mode and k is proportional to the
circular frequency of vibration. Each of the solutions of equations (Al)
has the fom

V(~) = Bexg

where A and B are arbitrary constants. Substituting this form into
equations (Al) leads to the biquadratic equation

*
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~’+‘2(’:‘ %2)~2+‘262%32%2- ‘)=0

and to the following relationship between

B=
A

Eqution (A3) has the four solutions A =

A and B:.

A

tu and h = *i~ where

)

ct=+~(’:+%:)+i-+]

~=’;,[(%?+%’)+imj] I
The general solution of equations (Al) maybe written in the form

Y(6) 1=Clcosh@+C2sinh@+ C5cos B5+C4sinpk

(A3)

(A4)

.

.

(A5)

—

.

a.2+ k2k~2

(
WE) = “a C2

P2- k2ks2

P (
C4

where ~p C21 Cz, and C4

)cosh a~ + Cl SiIlha~ +

I

(A6)

Cos pg -
)

C3 sin pg

are arbitrary functions of k which must

.

be determined in o~der to satisfy the boundary conditions (eqs. (A2)).

Substituting equations (A6) into equations (A2) yields four homo-
geneous algebraic eqpations for Cl, C2, C3, and C4. The existence

of nontrivial solutions of these equations requires the vanishing of the
determinant of coefficients. This criterion yields the frequency equation

(A7)

.

—.
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+
where

.

●

U2 + k2k~2
7 =

P2 - k2ks2

The solutions of equation (A7) are the natural frequencies of vllma-
tion ki, where i = 0, 1, 2, . . . . For k = ki~ the homogeneo~

algebraic eqpations may be solved for the relative magnitudes of the
quantities Cl, C2, C3, and C4. For i = 1, 2, . . ., the resulting

vibration mode shapes may be written in the form

(i=l,2,0 ..)

Pi2 -

{

ki~2 13i sin j3i
w~(g) = c

Sinh q
— Sinh afk +

13~ = 7i Pi
sin 13i~-

9

$i2 - ki2ks2
‘c ( )[ (

cosh ai + 7i cos pi Ai cos ~i~ - cosh ai~
)ai2 + Pi2

( Pi
‘in ‘iE+< 7i ‘i*a~k)1)

.
where

pi
sin pi - ~ sinh ai

f%= .

(i=l,2, ...)

(A8)

.
Cos pi

The rigid body mode, corresponding

and $o(~) = O.

to ko = O, has the components ~O(g) . C
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Orthogonality of the Natural Modes
.

The differential equations (Al) are satisfied by any of the infinite .
number of natural modes and corresponding frequencies. Thus, for the
ith mode,

=0

+(%’- vi)’+k& = o

Let the first of these eqyations be multipliedby
ponent VJ of the jth mode and the second by the

ponent ~j. If the resulting equations are added

the beam length, there results

the rotational com-
translational com-

and integrated over

.

~’ +(ii’ -0, ‘g

Integrating by parts the first two integrals on
the preceding equation yields:

the right-hand side of .

- m’ -‘Jdg+

(J39)

This process is valid also if the roles of the ith and jth modes are
reversed. Interchanging i and j in equation (A9) and subtracting

—

the result frcnnequation (A9) leads to
9
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(A1O)

If now the boundary conditions (eqs. (A2)) are imposed, equation (A1O)
is found to reduce to

or

Equation (All) is the orthogonality condition satisfied by the natural
vibration modes of a uniform free-free Timoshenko hem with a concentrated
mass at the center.

Determination of the Generalized Mass

The determination of the generalized mass

by direct integration is a smnewhat laborious process for i+o. Fortu-
nately, ~ can be expressed in terms of certain boundary values of the
mode shapes by the application of a limiting process to equation (A1O) in
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which the functions

of k. mus, if

and

NACA TN 424-4

.

Yi and vi are considered as continuous functions

.

equation (A1O) becomes, in the limit as dk approaches zero,

(
1

‘i’ ~)k.ki-()]$i $ v’
‘=%

(i=l,2, ...)

o

.

(A12) .

This eqpation is applicable to uniform besms and may be extended, if
desired, to nonuniform beams. On substitution of the boundary conditions
(eqs. (A2)), equation (AU) reduces to

Hence, the generalized mass is given by

(i=l,2, ...)

‘i = -*vJ4iYllk=k,‘i=1’2’“ “ “) ‘AI°
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‘e

Note that only the second boundary condition (eq. (A2b)) is altered
by differentiation with respect to k. This arises from the fact that

. only this boundary condition depends for its satisfaction on the frequency
equation (A7); that is, the mode shapes (eqs. (A8)) satisfy the other
boundary conditions for any value of k but satisfy eqpation (A2b) only
for k=% sidce

~’(l) =C(~2 - k2ks2)F(k)

where F(k) is defined by equation (A7). It is only by virtue of this
dependence of one or more boundsry conditions on the frequency equation
that equations (A12) yield a value of mi. Hence, it must be concluded

that, for a beam for which none of the boundary conditions depend for
their satisfaction on the freqpency equation (as, for enmple, a simply
supported beam), equations (A12) are not applicable. For such a beam,
mi is determined by direct integration.

.

.

.



48 NACA TN 4244

REFERENCES

1.

2.

3*

4.

5*

6.

7*

8.

9*

10.

11.

Biot, M. A.,
Structures
ARR 4Hlo.)

~d BiSp~in@Off, R . L.:
During Landing. NACA WR

-c -d-s on Airplane
W-92, 1944. (Formerly NACA

Willisms, D.: Displacements of a Linear Elastic System Under a Gtven
Transient Load. -British S.M.E. C/7219/DW/19,A@. 1*.

Uflyand, Y. S.: Rasprostranenie voln pri poperechnykh kolebanizakh
sterzhney i plastin. (Propagation of Waves in Transverse Vibrations
of Beams and Plates.) Prikladnaya Matematika i Mekhanika (Moscow,
Leningrad), vol. ~1, no. 3, May-June lgh8, pp. 287-300.

Raniberg,Walter: Transient Vibration in an Airplane Wing Obtained by
Several Methods. Res. Paper IIP1984,Nat. Bur. of Standards Jour.
Res., vol. 42, no. 5, I&y 1949, pp. 437-4-47.

Isakson, G.: A Survey of Analytical Methods for Determining Transient
Stresses in Elastic Structures. Contract No. N5 ori-07833, Office
Naval Res. (Project NR-035-259), M.I.T., Mar. 3, 1~0.

Leonard, Robert W., and Budiansky, Bernard: On Traveling Waves in
Beans. NACA Rep. 11~, 1954. (Supersedes NACA TN 2874.)

Adsmson, Bo: FunktionssHttet hos Elastiska Balkar, ~verkade av
DetonationsbelastningarMed HHnsyn Tagen till Rotationstr&ghet och
SkJuvkrafter. (Behaviour of Elastic Besms Under Action of
Detonating Charges With Special Reference to Rotsry Inertia and
Shearing Forces.) Rapport nr 109:10~ Ku@. Fortifikationsf&valtningen,
Bef!Sstningsbyr&nForsknings- och F&s&ssektionen (Stockholm, Sweden),
1955 ●

Houbolt, John C.: A Recurrence Matrix Solution for the Dynamic Response
of Aircraft in Gusts. NACA Rep. 1010, 1%1. (SupersedesNACA
TN 2060.)

Timoshenko, S., and Young, D. H.: Vibration Problems in Engineering.
Third cd., D. Van Nostrand Co., Inc.,

Bisplinghoff, Raymond L., Ashley, Holt,
ehsticity. Addison-Wesley Pub. Co.,
1955, pp. 80-84.

1955, p)?.327-331.

and Halfman, Robert L.: Aero-
Inc. (Cambridge,Mass.), c.

Mindlin, R. D., and Goodman, L. E.: Beam Vibrations With Time-Dependent
Boundary Conditions. Jour. Appl. Mech., vol. 17, no. 4, Dec. lg’jO,

PPo 377-380~ ●

.



‘V
9

.

NACA TN 4244 49

12. O’Brien, George G., Hymn, Morton A., and I&plan, Sidney: A Study
of the Numerical Solution of Partial Differential Equtions. Jour.
Math. and Phys., vol. XHX, no. 4, Jan. 151, pp. 223-251.

13. Benscoter, Stanley U., and Gossard, Myron L.: Matrix Methods for
Calculating Cantilever-Beam Deflections. I?ACATN 1827, 1949.

14. Stowell, Elbridge Z., Schwartz, Edward B., and Houbolt, John C.:
Bending and Shear Stresses Developed by the Instantaneous Arrest
of the Root of a Moving Cantilever Beam.
(Formerly NACA ARR I&127.)

NACA Rep. 828, 1%3.

15. Budiansky, Bernard, and ICruszewski,Edwin T.: Transverse Vibrations
of Hollow Thin-Walled Cylindrical Beams. NACA Rep. 1129, 1933.
(Supersedes NACATN 2682.)

.

.



.

,

.



NACA TN 4244

.

*

.

(b)Csntllever-



c .

QHltity I Amlytiuii.qli-essim

1 ,

.

. ,



.

f(t,r)

Pi(r)

W*T)
I



54 NACA TN 4244

.
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